373 research outputs found

    Self-enforcing regional vaccination agreements

    Get PDF
    In a highly interconnected world, immunizing infections are a transboundary problem, and their control and elimination require international cooperation and coordination. In the absence of a global or regional body that can impose a universal vaccination strategy, each individual country sets its own strategy. Mobility of populations across borders can promote free-riding, because a country can benefit from the vaccination efforts of its neighbours, which can result in vaccination coverage lower than the global optimum. Here we explore whether voluntary coalitions that reward countries that join by cooperatively increasing vaccination coverage can solve this problem. We use dynamic epidemiological models embedded in a game-theoretic framework in order to identify conditions in which coalitions are self-enforcing and therefore stable, and thus successful at promoting a cooperative vaccination strategy. We find that countries can achieve significantly greater vaccination coverage at a lower cost by forming coalitions than when acting independently, provided a coalition has the tools to deter free-riding. Furthermore, when economically or epidemiologically asymmetric countries form coalitions, realized coverage is regionally more consistent than in the absence of coalitions

    Measuring populations to improve vaccination coverage

    No full text
    In low-income settings, vaccination campaigns supplement routine immunization but often fail to achieve coverage goals due to uncertainty about target population size and distribution. Accurate, updated estimates of target populations are rare but critical; short-term fluctuations can greatly impact population size and susceptibility. We use satellite imagery to quantify population fluctuations and the coverage achieved by a measles outbreak response vaccination campaign in urban Niger and compare campaign estimates to measurements from a post-campaign survey. Vaccine coverage was overestimated because the campaign underestimated resident numbers and seasonal migration further increased the target population. We combine satellite-derived measurements of fluctuations in population distribution with high-resolution measles case reports to develop a dynamic model that illustrates the potential improvement in vaccination campaign coverage if planners account for predictable population fluctuations. Satellite imagery can improve retrospective estimates of vaccination campaign impact and future campaign planning by synchronizing interventions with predictable population fluxes

    Topographic determinants of foot and mouth disease transmission in the UK 2001 epidemic

    Get PDF
    Background A key challenge for modelling infectious disease dynamics is to understand the spatial spread of infection in real landscapes. This ideally requires a parallel record of spatial epidemic spread and a detailed map of susceptible host density along with relevant transport links and geographical features. Results Here we analyse the most detailed such data to date arising from the UK 2001 foot and mouth epidemic. We show that Euclidean distance between infectious and susceptible premises is a better predictor of transmission risk than shortest and quickest routes via road, except where major geographical features intervene. Conclusion Thus, a simple spatial transmission kernel based on Euclidean distance suffices in most regions, probably reflecting the multiplicity of transmission routes during the epidemic
    • …
    corecore